Finite Control Set Model Predictive Control (FCS-MPC) for Enhancing the Performance of a Single-Phase Inverter in a Renewable Energy System (RES)

Author:

Lin Chang-Hua1ORCID,Farooqui Shoeb Azam1ORCID,Liu Hwa-Dong2ORCID,Huang Jian-Jang3ORCID,Fahad Mohd1

Affiliation:

1. Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan

2. Undergraduate Program of Vehicle and Energy Engineering, National Taiwan Normal University, Taipei 106, Taiwan

3. Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 106, Taiwan

Abstract

A single-phase five-level T-type topology has been investigated in this article. This topology has emerged as a viable option for renewable energy systems (RES) due to its inherent benefits. The finite control set model predictive control (FCS-MPC) strategy has been implemented to this topology in order to improve the performance and overall reliability of the system. This control strategy empowers the inverter to predict future behavior based on a discrete set of control signals, enabling precise modulation and high-speed response to system dynamics. In the realm of RES, integration of FCS-MPC with multilevel inverters (MLIs) holds great potential to enhance energy conversion efficiency, grid integration, and overall system reliability. The article is structured to present an overview of the evolving landscape of power electronic systems, and the advantages of FCS-MPC. This paper provides a comprehensive analysis of the FCS-MPC control strategy applied to the single-phase five-level T-type topology. The study covers various aspects including the theoretical framework, hardware development, and experimental evaluation. It is obvious from the analysis that this inverter topology is reliable. Several redundant states make it fault-tolerant which helps in maintaining the output voltage at the same level even in the fault conditions. Additionally, the results show that the output load voltage is maintained at the same level irrespective of load change. Also, output load voltage has maintained the high-quality sinusoidal characteristics as the total harmonic distortion (THD) is very low. With all these features, this system is suitable within the framework of RES.

Funder

National Science and Technology Council, Taiwan

NTUS innovation cooperation

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3