Design and Experimental Verification of PUC Multilevel Inverter-Based PMSG Wind Energy Conversion System

Author:

Hasirci Habip Yusuf1,Vural Ahmet Mete2ORCID

Affiliation:

1. Department of Electrical and Electronics Engineering, Faculty of Engineering and Architecture, Kilis 7 Aralık University, Kilis 79000, Turkey

2. Department of Electrical and Electronics Engineering, Faculty of Engineering, Gaziantep University, Gaziantep 27310, Turkey

Abstract

In this study, a wind energy conversion system is designed using a three-phase permanent magnet synchronous generator, a six-diode bridge rectifier, a DC–DC boost converter, an inverter, and a load. The proposed inverter is a Packed U-Cell-based multilevel inverter having five or seven voltage levels at the output. It is also a topology that is not widely used in wind energy applications. Furthermore, a dual-mode PI-PI control technique is proposed to regulate the auxiliary capacitor voltage in the PUC MLI. The inverter is designed and simulated for a permanent magnet synchronous generator-based variable speed wind energy conversion system. Additionally, the design and experimental application of the proposed system is carried out in a laboratory environment. In the experimental application, the rated voltage of the Packed U-Cell multilevel inverter is chosen as 45 V. The switching frequency of the multilevel inverter is set to 4 kHz, and a generator with rated power of 700 W is selected. The output voltage of the generator is varied between 25 V and 35 V through an induction motor. This varying voltage is increased to 45 V using a DC–DC boost converter. Finally, it is observed that the power generated by the permanent magnet synchronous generator is successfully transferred to the load and the designed system operates with low harmonic content.

Funder

Scientific Research Projects Unit of Gaziantep University

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3