Effects of Waste Plastic and Glass Aggregates on the Strength Properties of Ambient-Cured One-Part Metakaolin-Based Geopolymer Concrete

Author:

Ajayi Babatunde Luke1,Babafemi Adewumi John1ORCID

Affiliation:

1. Department of Civil Engineering, Stellenbosch University, Stellenbosch 7602, South Africa

Abstract

The production of Portland cement (PC) is associated with carbon emissions. One-part geopolymer “just add water” is a user- and environmentally-friendly binder that can potentially substitute PC. However, there is limited research on the setting time, fresh, and strength properties of one-part metakaolin (MK)-based geopolymer concrete (OMGPC) incorporating recycled aggregates. Hence, the study explored the fresh, mechanical (compressive, flexural, splitting tensile, and E-modulus) and microstructural properties of ambient cured (7-, 28-, and 90-day) OMGPC containing recycled waste plastics (RESIN8) and recycled fine waste glass aggregate (FWG) at 5% and 10% by volume of the sand. The study result shows that 2% trisodium phosphate by wt. of the binder retard the initial and final setting times of OMGPC. At the same time, the incorporation of RESIN8 and FWG aggregates improved the workability of geopolymer concrete. The lightweight properties of RESIN8 aggregate reduce the hardened density of OMGPC, while the FWG specimens show a similar density to the control. The compressive strength of RESIN8 and FWG OMGPC range from 19.8 to 24.6 MPa and 26.9 to 30 MPa, respectively, compared to the control (26 to 28.9 MPa) at all curing ages. The flexural and splitting tensile strength of the OMGPC range from 2.2 to 4.5 MPa and 1.7 to 2.8 MPa, respectively. OMGPC is a viable alternative to Portland cement, and FWG can substitute sand in structural concrete by up to 10% and RESIN8 aggregate at 5% by volume of the natural sand.

Publisher

MDPI AG

Reference87 articles.

1. Incorporation of waste materials into Portland cement clinker synthesised from reagent-grade chemicals;Chen;Int. J. Appl. Ceram. Technol.,2009

2. A life-cycle assessment of Portland cement manufacturing: Comparing the traditional process with alternative technologies;Huntzinger;J. Clean. Prod.,2009

3. Global Warming Impact on the Cement and Aggregates Industries;Davidovits;World Resour. Rev.,1994

4. Performance and sustainability overview of sodium carbonate activated slag materials cured at ambient temperature;Adesina;Resources World Resour. Rev.,1994

5. International Energy Agency (2023, September 12). Cement Technology Roadmap Plots Path to Cutting CO2 Emissions 24% by 2050. Available online: https://www.iea.org/news/cement-technology-roadmap-plots-path-to-cutting-co2-emissions-24-by-2050.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3