Can Machine Learning Predict Running Kinematics Based on Upper Trunk GPS-Based IMU Acceleration? A Novel Method of Conducting Biomechanical Analysis in the Field Using Artificial Neural Networks

Author:

Lawson Michael12ORCID,Naemi Roozbeh13ORCID,Needham Robert A.1,Chockalingam Nachiappan1ORCID

Affiliation:

1. School of Health Science and Wellbeing, Staffordshire University, Stoke-on-Trent ST4 2DE, UK

2. Middlesbrough Football Club, Middlesbrough TS3 6RS, UK

3. School of Health and Society, University of Salford, Greater Manchester M6 6PU, UK

Abstract

This study aimed to investigate whether running kinematics can be accurately estimated through an artificial neural network (ANN) model containing GPS-based accelerometer variables and anthropometric data. Thirteen male participants with extensive running experience completed treadmill running trials at several speeds. Participants wore a GPS device containing a triaxial accelerometer, and running kinematics were captured by an 18-camera motion capture system for each trial. Multiple multilayer perceptron neural network models were constructed to estimate participants’ 3D running kinematics. The models consisted of the following input variables: 3D peak accelerometer acceleration during foot stance (g), stance time (s), running speed (km/h), participant height (cm), leg length (cm), and mass (kg). Pearson’s correlation coefficient (r), root mean squared error (RMSE), and relative root mean squared error (rRMSE) showed that ANN models provide accurate estimations of joint/segment angles (mean rRMSE = 13.0 ± 4.3%) and peak segment velocities (mean rRMSE = 22.1 ± 14.7%) at key gait phases across foot stance. The highest accuracies were achieved for flexion/extension angles of the thorax, pelvis, and hip, and peak thigh flexion/extension and vertical velocities (rRMSE < 10%). The current findings offer sports science and medical practitioners working with this data a method of conducting field-based analyses of running kinematics using a single IMU.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3