1. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, Ghemawat S, Goodfellow I, Harp A, Irving G, Isard M, Jia Y, Jozefowicz R, Kaiser L, Kudlur M, Levenberg J, Mané D, Monga R, Moore S, Murray D, Olah C, Schuster M, Shlens J, Steiner B, Sutskever I, Talwar K, Tucker P, Vanhoucke V, Vasudevan V, Viégas F, Vinyals O, Warden P, Wattenberg M, Wicke M, Yu Y, Zheng X (2015) TensorFlow: large-scale machine learning on heterogeneous systems. https://www.tensorflow.org/. Software available from tensorflow.org
2. Aljaaf AJ, Hussain AJ, Fergus P, Przybyla A, Barton G (2016) Evaluation of machine learning methods to predict knee loading from the movement of body segments. In: Proceedings of the international joint conference on neural networks, vol 2016, pp 5168–5173, DOI https://doi.org/10.1109/IJCNN.2016.7727882
3. Ardestani MM, Chen Z, Wang L, Lian Q, Liu Y, He J, Li D, Jin Z (2014) Feed forward artificial neural network to predict contact force at medial knee joint: application to gait modification. Neurocomputing 139:114–129. https://doi.org/10.1016/j.neucom.2014.02.054
4. Ardestani MM, Moazen M, Jin Z (2014) Gait modification and optimization using neural network-genetic algorithm approach: application to knee rehabilitation. Expert Syst Appl 41(16):7466–7477. https://doi.org/10.1016/j.eswa.2014.06.034
5. Ardestani MM, Zhang X, Wang L, Lian Q, Liu Y, He J, Li D, Jin Z (2014) Human lower extremity joint moment prediction: a wavelet neural network approach. Expert Syst Appl 41(9):4422–4433. https://doi.org/10.1016/j.eswa.2013.11.003