Experimental Study and Bearing Capacity Calculation of Compression-Reinforced Concrete Columns Strengthened with Ultra-High-Performance Concrete

Author:

Liu Xianhui1,Pan Meiqing1,Li Weizhao1,Jing Chenggui1,Chang Wenlong1,Zhang Haoyang1

Affiliation:

1. School of Civil and Architectural Engineering, Guangxi University of Science and Technology, Liuzhou 545006, China

Abstract

A total of five ultra-high-performance concrete (UHPC)-strengthened reinforced concrete (RC) columns and one RC column were built and subjected to eccentric compression testing to examine the force performance of UHPC-strengthened eccentrically compressed plain RC columns. This experimental study examined the crack progression, the damage morphology, the deformation ability, the maximum load-carrying capacity, and the ductile properties of the eccentrically compressed columns. It also investigated the impacts of eccentricity, the reinforcement thickness, and the addition of steel fibers on the effectiveness of reinforcement. The cracking load, peak load, and ductility coefficient of the UHPC-reinforced specimens were increased by 100.28%, 172.30%, and 56.30%, respectively, compared with the RC column at an initial eccentricity of 50 mm. As the eccentricity distance increased, the bearing capacity of the UHPC eccentrically compressed specimens decreased, and the deformation capacity increased. Increasing the steel fiber dosage within the appropriate range decreased the crack width of the specimen. The addition of 2% steel fiber resulted in a 24.8% increase in cracking load, an 8.96% increase in peak load, and a 2.60% increase in ductility coefficient compared to the addition of 1% steel fiber. However, the reinforcing effect of UHPC was weakened under high eccentric pressures. Based on the theory of concrete structure and mechanical principles, the formula for calculating the compressive bearing capacity of RC columns strengthened with high-performance concrete was proposed. The results of calculating the positive section bearing capacity of eccentrically compressed RC columns reinforced with high-performance concrete are in good agreement with the test values. The results of this paper provide an experimental basis and theoretical foundation for the cross-sectional design of UHPC eccentrically compressed columns.

Funder

Key Research and Development Project of Guangxi, China

Natural Science Foundation of Guangxi, China

Special Project for Science and Technology Bases and Talents of Guangxi, China

Publisher

MDPI AG

Reference33 articles.

1. A review of UHPC research;Huang;Concrete,2019

2. Sanjuán, M.A., and Andrade, C. (2021). Reactive powder concrete: Durability and applications. Appl. Sci., 11.

3. Cheng, Y. (2018). Experimental Study on Flexural and Axial Compression Performance of UHPC RC Members, Elsevier.

4. Experimental study on axial compressive performance of RC piers and columns with different UHPC reinforcement measures;Lin;World Bridge,2022

5. Study on axial compressive load capacity of UHPC reinforced RC columns;Wang;J. Ofilin Univ. Archit.,2022

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3