Superior Hydrogen Sorption Kinetics of Ti0.20Zr0.20Hf0.20Nb0.40 High-Entropy Alloy

Author:

Zhang Jianwei,Li Pengcheng,Huang Gang,Zhang Weiguang,Hu Jutao,Xiao Haiyan,Zheng Jian,Zhou XiaosongORCID,Xiang Xia,Yu Jingxia,Shen HuahaiORCID,Li Sean,Zu Xiaotao

Abstract

High entropy alloys (HEAs) are composed of multiple main metal elements and have attracted wide attention in various fields. In this study, a novel Ti0.20Zr0.20Hf0.20Nb0.40 HEA was synthesized and its hydrogenation properties were studied, including sorption thermodynamics and hydrogen absorption/desorption kinetics. The maximum hydrogen absorption capacity was 1.5 H/atom at 573 K. X-ray diffraction (XRD) analysis indicated that the crystal structure of Ti0.20Zr0.20Hf0.20Nb0.40 HEA transformed from body-centered cubic (BCC) to body-centered tetragonal (BCT) with increasing hydrogen content, and to face-centered cubic (FCC) after hydrogen absorption to saturation. As a multi-principal element alloy, the Ti0.20Zr0.20Hf0.20Nb0.40 HEA possesses unique hydrogen absorption characteristics. The hydrogen absorption platform pressure rises gradually with the increase of the hydrogen absorption amount, which is caused by multiple kinds of BCT intermediate hydrides with consecutively increasing c/a. The full hydrogen absorption of the Ti0.20Zr0.20Hf0.20Nb0.40 HEA was completed in almost 50 s, which is faster than that of the reported hydrogen storage alloys in the literature. The experimental results demonstrate that the Ti0.20Zr0.20Hf0.20Nb0.40 HEA has excellent kinetic properties, unique thermodynamic hydrogen absorption performance, as well as a low plateau pressure at room temperature.

Funder

National Natural Science Foundation of China

the President’s Foundation of the China Academy of Engineering Physics

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3