An Experimental Study on Low-Cycle Fatigue Crack Initiation Life Prediction of Powder Superalloy FGH96 Based on the Manson-Coffin and Damage Mechanics Methods

Author:

Xu Yuanming,Chen Hao,Zhang Shuming,He Tianpeng,Liu XuerongORCID,Chang Xiayuan

Abstract

The applicability of both prediction methods for low-cycle fatigue life of powder superalloy based on the Manson-Coffin equation and damage mechanics were addressed. Both fatigue life prediction models were evaluated by low-cycle fatigue experimental data of powder superalloy FGH96 with non-destructive standard parts and those with inclusions. Due to the characteristics of high strength and low plasticity of powder superalloy FGH96, errors in calculating the plastic strain amplitude deviate severely the prediction outcomes when using Manson-Coffin method. Meanwhile, by introducing the damage variable which characterizes the material damage, the damage evolution equation can be built by fitting the experimental data of standard parts and also applied to powder superalloy specimens containing inclusion. It is indispensable to accurately calculate the damage characterization parameter through finite element analysis in local stress concentration around the inclusion. The applicability of the prediction model was verified by the test life cycles of experimental specimens with different types and sizes of inclusions subsequently. Testing and simulation work showed much better prediction accuracies globally for the damage mechanics approach.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

Reference19 articles.

1. DEVELOPMENT AND INNOVATION OF SUPERALLOY IN CHINA

2. Status and development of powder metallurgy nickel-based disk superalloys

3. Research progress in powder metallurgy superalloys and manufacturing technologies for aero−engine application;Zhang;Acta. Metall. Sin.,2019

4. Effect of powder particle size on microstructure and mechanical property of Ni−based P/M superalloy product;Zhang;J. Iron Steel Res. Int.,2003

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3