The Effect of Water Spinach on the Water Quality, Antioxidant System, Non-Specific Immune Response, Growth Performance, and Carbon Balance in Red Tilapia Production

Author:

Luo Yuan-Yuan1,Chen Xian-Can1,Xie Rui-Lin1,Ruan Zhuo-Hao2ORCID,Lu Zhi-Qiang1,Jiang Liang-Sen1ORCID,Li Yi-Fu1,Liu Wen-Sheng134

Affiliation:

1. College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China

2. Laboratory of Aquatic Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China of Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510642, China

3. Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou 510642, China

4. University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China

Abstract

In this study, the compound aquaculture model of red tilapia (O. mossambicus albina × O. urolepis hornorum) and water spinach (Ipomoea aquatica) was used to investigate the effect of water spinach rafts on the water quality, antioxidant system, non-specific immune response, and growth performance of red tilapia and the carbon balance of payments. Red tilapia is characterized by its high adaptability to different production environments and food sources, as one of the most productive fish in aquaculture, and is well accepted in the market due to its nutritional and organoleptic characteristics. The experiment lasted for nine weeks and included two systems: the red tilapia-water spinach raft aquaponics (AP) system with 10% cover ratio with water spinach floating beds, and the aquatic monoculture (AM) system with only red tilapia. The total phosphorus (TP), total nitrogen (TN), and nitrate nitrogen (NO−3-N) in the AM were higher than those in AP from the fifth to ninth week. On the second, third, fifth, and sixth weeks, the ammonia nitrogen (NH4+-N), in the AM was higher than those in the AP. From the seventh week, the pH of the AM was significantly lower than the AP, while the nitrite nitrogen (NO−2-N) was significantly higher than the AP. The water quality index of the AP was better than that of the AM, indicating that water spinach can remove the nutrients from aquaculture water bodies. The average daily gain and specific growth rate (SGR) of fish in AP were higher than those in the AM. The acid phosphatase (ACP), alkaline phosphatase (AKP), and catalase (CAT) activities in the hepatopancreas of red tilapia in the AP were also significantly higher than those in the AM, while the malondialdehyde (MDA) in the AP was lower than the AM. The serum ACP and CAT of red tilapia in the AP were also higher than those in the AM, while the MDA of fish in the AP was lower than the AM. The results showed that both the experimental group and the control group were carbon sources and released greenhouse gases into the atmosphere, but the total carbon emissions of the red tilapia and the water spinach symbiotic system in the experimental group was significantly lower than that of the control group (p < 0.05). These results demonstrated that the application of water spinach rafts in aquaponics can not only improve the water quality, but also improve the growth performance, antioxidant system and non-specific immune responses of red tilapia, while promoting the utilization of organic matter in the aquaculture system, improving the ecological benefits in terms of the carbon income and expenditure.

Funder

Special Fund for Science and Technology of Guangdong Province

Publisher

MDPI AG

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3