Effect of an Ipomoea aquatica Floating Raft on the Water Quality, Antioxidant System, Non-Specific Immune Responses, and Microbial Diversity of Penaeus vannamei in an Aquaculture System

Author:

Ruan Zhuohao123ORCID,Xie Ruilin1,Li Yifu14,Luo Yuanyuan1,Weng Zufeng5,Liu Wensheng146

Affiliation:

1. College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China

2. Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China

3. Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Heyuan 517000, China

4. Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou 510642, China

5. Pingtan Comprehensive Experimental Zone Marine and Fisheries Law Enforcement Detachment, Fuzhou 350400, China

6. University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangzhou 510642, China

Abstract

Pacific white shrimp (Penaeus vannamei) is one of the main shrimp species cultivated around the world. Despite its high yields and easy handling, water pollution from intensive shrimp cultivation remains a serious problem in China. In this study, a compound aquaculture model of P. vannamei and water spinach (Ipomoea aquatica) was used to investigate the effect of a water spinach floating raft on water quality, antioxidants, non-specific immune response, growth performance, and microbial diversity. The experimental design of this study consisted of two groups with three replicates for each, i.e., control group: aquatic monoculture (AM) system with only P. vannamei; treatment group: P. vannamei-I. aquatica raft aquaponics (AP) system with a 50% cover ratio with a water spinach floating raft. The experiment lasted for seven weeks. The results show that the concentrations of total phosphorus (TP), total nitrogen (TN), nitrate nitrogen (NO3−-N), ammonia nitrogen (NH4+-N), nitrite nitrogen (NO2−-N), and active phosphorus (AP) in the AM group were higher than those in the AP group at different sampling times. The water quality index of the AP group was better than that of the AM group, indicating that water spinach can remove the nutrients from aquaculture water bodies. The average daily gain and survival rate of shrimp in the AP group were higher than those in the AM group. The total antioxidant capacity (T-AOC), catalase (CAT), superoxide dismutase (SOD), malondialdehyde (MDA), and acid phosphatase (ACP) in the AP group were better than those in the AM group. The Shannon–Wiener and Simpson indices of the gut, water, and sediment of the AP system were significantly higher than those in the AM system, which implied a higher abundance of microorganisms in the AP system. These results demonstrate that the application of a water spinach floating raft in aquaponics can not only improve the water quality, but also improve the growth performance, antioxidant system, and non-specific immune responses of Pacific white shrimp, while increasing the abundance of microorganisms in the aquaculture system and improving the ecological benefits in terms of the expenditure.

Funder

Special Fund for Science and Technology of Guangdong Province

National Key R&D Program of China

Heyuan Branch, Guangdong Laboratory for Lingnan Modern Agriculture Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3