A Simple Convolutional Neural Network with Rule Extraction

Author:

Bologna GuidoORCID

Abstract

Classification responses provided by Multi Layer Perceptrons (MLPs) can be explained by means of propositional rules. So far, many rule extraction techniques have been proposed for shallow MLPs, but not for Convolutional Neural Networks (CNNs). To fill this gap, this work presents a new rule extraction method applied to a typical CNN architecture used in Sentiment Analysis (SA). We focus on the textual data on which the CNN is trained with “tweets” of movie reviews. Its architecture includes an input layer representing words by “word embeddings”, a convolutional layer, a max-pooling layer, followed by a fully connected layer. Rule extraction is performed on the fully connected layer, with the help of the Discretized Interpretable Multi Layer Perceptron (DIMLP). This transparent MLP architecture allows us to generate symbolic rules, by precisely locating axis-parallel hyperplanes. Experiments based on cross-validation emphasize that our approach is more accurate than that based on SVMs and decision trees that substitute DIMLPs. Overall, rules reach high fidelity and the discriminative n-grams represented in the antecedents explain the classifications adequately. With several test examples we illustrate the n-grams represented in the activated rules. They present the particularity to contribute to the final classification with a certain intensity.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference48 articles.

1. Convolutional neural networks for sentence classification;Kim;arXiv,2014

2. BB_twtr at SemEval-2017 Task 4: Twitter Sentiment Analysis with CNNs and LSTMs;Cliche;arXiv,2017

3. What do we need to build explainable AI systems for the medical domain?;Holzinger;arXiv,2017

4. Survey and critique of techniques for extracting rules from trained artificial neural networks

5. A STUDY ON RULE EXTRACTION FROM SEVERAL COMBINED NEURAL NETWORKS

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3