A Process-Oriented Method for Tracking Rainstorms with a Time-Series of Raster Datasets

Author:

Xue CunjinORCID,Liu Jingyi,Yang Guanghui,Wu Chengbin

Abstract

Extreme rainstorms have important socioeconomic consequences, but understanding their fine spatial structures and temporal evolution still remains challenging. In order to achieve this, in view of an evolutionary property of rainstorms, this paper designs a process-oriented algorithm for identifying and tracking rainstorms, named PoAIR. PoAIR uses time-series of raster datasets and consists of three steps. The first step combines an accumulated rainfall time-series and spatial connectivity to identify rainstorm objects at each time snapshot. Secondly, PoAIR adopts the geometrical features of eccentricity, rectangularity, roundness, and shape index, as well as the thematic feature of the mean rainstorm intensity, to match the same rainstorm objects in successive snapshots, and then tracks the same rainstorm objects during a rainstorm evolution sequence. In the third step, an evolutionary property of a rainstorm sequence is used to extrapolate its spatial location and geometrical features at the next time snapshot and reconstructs a rainstorm process by linking rainstorm sequences with an area-overlapping threshold. Experiments on simulated datasets demonstrate that PoAIR performs better than the Thunderstorm Identification, Tracking, Analysis and Nowcasting algorithm (TITAN) in both rainfall tracking and identifying the splitting, merging, and merging-splitting of rainstorm objects. Additionally, applications of PoAIR to Integrated Multi-satellitE Retrievals for Global Precipitation Mission (GPM/IMERG) final products covering mainland China show that PoAIR can effectively track rainstorm objects.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3