Object-Oriented Clustering Approach to Detect Evolutions of ENSO-Related Precipitation Anomalies over Tropical Pacific Using Remote Sensing Products

Author:

Li Lianwei1,Zhang Yuanyu1,Xue Cunjin2ORCID,Zheng Zhi1

Affiliation:

1. College of Oceanography and Space Informatics, China University of Petroleum, Qingdao 266580, China

2. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

Abstract

Precipitation extremes driven by the El Niño–Southern Oscillation (ENSO) are one of the critical ways in which the ENSO impacts the global climate, specifically in the tropical Pacific, where they have the potential to cause extreme weather conditions. However, existing approaches struggle to effectively identify the evolution of ENSO-related precipitation anomalies that change rapidly in spatial distribution. To address this challenge, we propose the object-oriented spatiotemporal clustering approach using remote sensing products (OSCAR) for detecting evolutions of ENSO-related precipitation anomalies. The OSCAR was validated using simulated datasets and applied to precipitation anomalies over the tropical Pacific. The simulation experiment demonstrates that the OSCAR outperforms the dual-constraint spatiotemporal clustering approach (DcSTCA) in accuracy, particularly for rapidly evolving precipitation anomaly variations. The application of the OSCAR demonstrates its ability to recognize the evolution of ENSO-related precipitation anomalies over the tropical Pacific, which may offer valuable references for global climate change research.

Funder

National Key Research and Development Program of China

Strategic Priority Research Program of the Chinese Academy of Sciences

Key Laboratory of Land Satellite Remote Sensing Application, Ministry of Natural Resources of the People’s Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3