Abstract
Superpixel segmentation usually over-segments an image into fragments to extract regional features, thus linking up advanced computer vision tasks. In this work, a novel coarse-to-fine gradient ascent framework is proposed for superpixel-based color image adaptive segmentation. In the first stage, a speeded-up Simple Linear Iterative Clustering (sSLIC) method is adopted to generate uniform superpixels efficiently, which assumes that homogeneous regions preserve high consistence during clustering, consequently, much redundant computation for updating can be avoided. Then a simple criterion is introduced to evaluate the uniformity in each superpixel region, once a superpixel region is under-segmented, an adaptive marker-controlled watershed algorithm processes a finer subdivision. Experimental results show that the framework achieves better performance on detail-rich regions than previous superpixel approaches with satisfactory efficiency.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献