Infrared Image Superpixel Segmentation Based on Seed Strategy of Contour Encoding

Author:

Li WeihuaORCID,Miao Zhuang,Mu Jing,Li Fanming

Abstract

Superpixel segmentation has become a crucial pre-processing tool to reduce computation in many computer vision applications. In this paper, a superpixel extraction algorithm based on a seed strategy of contour encoding (SSCE) for infrared images is presented, which can generate superpixels with high boundary adherence and compactness. Specifically, SSCE can solve the problem of superpixels being unable to self-adapt to the image content. First, a contour encoding map is obtained by ray scanning the binary edge map, which ensures that each connected domain belongs to the same homogeneous region. Second, according to the seed sampling strategy, each seed point can be extracted from the contour encoding map. The initial seed set, which is adaptively scattered based on the local structure, is capable of improving the capability of boundary adherence, especially for small regions. Finally, the initial superpixels limited by the image contour are generated by clustering and refined by merging similar adjacent superpixels in the region adjacency graph (RAG) to reduce redundant superpixels. Experimental results on a self-built infrared dataset and the public datasets BSD500 and 3Dircadb demonstrate the generalization ability in grayscale and medical images, and the superiority of the proposed method over several state-of-the-art methods in terms of accuracy and compactness.

Funder

Shanghai Key Laboratory of Criminal Scene Evidence funded Foundation

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3