Abstract
Clean technological machining operations can improve traditional methods’ environmental, economic, and technical viability, resulting in sustainability, compatibility, and human-centered machining. This, this work focuses on sustainable machining of Al-Mg-Zr alloy with minimum quantity lubricant (MQL)-assisted machining using a polycrystalline diamond (PCD) tool. The effect of various process parameters on the surface roughness and cutting temperature were analyzed. The Taguchi L25 orthogonal array-based experimental design has been utilized. Experiments have been carried out in the MQL environment, and pressure was maintained at 8 bar. The multiple responses were optimized using desirability function analysis (DFA). Analysis of variance (ANOVA) shows that cutting speed and depth of cut are the most prominent factors for surface roughness and cutting temperature. Therefore, the DFA suggested that, to attain reasonable response values, a lower to moderate value of depth of cut, cutting speed and feed rate are appreciable. An artificial neural network (ANN) model with four different learning algorithms was used to predict the surface roughness and temperature. Apart from this, to address the sustainability aspect, life cycle assessment (LCA) of MQL-assisted and dry machining has been carried out. Energy consumption, CO2 emissions, and processing time have been determined for MQL-assisted and dry machining. The results showed that MQL-machining required a very nominal amount of cutting fluid, which produced a smaller carbon footprint. Moreover, very little energy consumption is required in MQL-machining to achieve high material removal and very low tool change.
Subject
Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献