Detecting Change in Forest Structure with Simulated GEDI Lidar Waveforms: A Case Study of the Hemlock Woolly Adelgid (HWA; Adelges tsugae) Infestation

Author:

Boucher PeterORCID,Hancock Steven,Orwig DavidORCID,Duncanson Laura,Armston JohnORCID,Tang Hao,Krause KeithORCID,Cook Bruce,Paynter Ian,Li ZhanORCID,Elmes ArthurORCID,Schaaf Crystal

Abstract

The hemlock woolly adelgid (HWA; Adelges tsugae) is an invasive insect infestation that is spreading into the forests of the northeastern United States, driven by the warmer winter temperatures associated with climate change. The initial stages of this disturbance are difficult to detect with passive optical remote sensing, since the insect often causes its host species, eastern hemlock trees (Tsuga canadensis), to defoliate in the midstory and understory before showing impacts in the overstory. New active remote sensing technologies—such as the recently launched NASA Global Ecosystem Dynamics Investigation (GEDI) spaceborne lidar—can address this limitation by penetrating canopy gaps and recording lower canopy structural changes. This study explores new opportunities for monitoring the HWA infestation with airborne lidar scanning (ALS) and GEDI spaceborne lidar data. GEDI waveforms were simulated using airborne lidar datasets from an HWA-infested forest plot at the Harvard Forest ForestGEO site in central Massachusetts. Two airborne lidar instruments, the NASA G-LiHT and the NEON AOP, overflew the site in 2012 and 2016. GEDI waveforms were simulated from each airborne lidar dataset, and the change in waveform metrics from 2012 to 2016 was compared to field-derived hemlock mortality at the ForestGEO site. Hemlock plots were shown to be undergoing dynamic changes as a result of the HWA infestation, losing substantial plant area in the middle canopy, while still growing in the upper canopy. Changes in midstory plant area (PAI 11–12 m above ground) and overall canopy permeability (indicated by RH10) accounted for 60% of the variation in hemlock mortality in a logistic regression model. The robustness of these structure-condition relationships held even when simulated waveforms were treated as real GEDI data with added noise and sparse spatial coverage. These results show promise for future disturbance monitoring studies with ALS and GEDI lidar data.

Funder

National Science Foundation

National Aeronautics and Space Administration

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3