Using GEDI as training data for an ongoing mapping of landscape-scale dynamics of the plant area index

Author:

Ziegler AliceORCID,Heisig Johannes,Ludwig Marvin,Reudenbach Chris,Meyer Hanna,Nauss Thomas

Abstract

Abstract Leaf or plant area index (LAI, PAI) information is frequently used to describe vegetation structure in environmental science. While field measurements are time-consuming and do not scale to landscapes, model-based air- or space-borne remote-sensing methods have been used for many years for area-wide monitoring. As of 2019, NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission delivers a point-based LAI product with 25 m footprints and periodical repetition. This opens up new possibilities in integrating GEDI as frequently generated training samples with high resolution (spectral) sensors. However, the foreseeable duration of the system installed on the ISS is limited. In this study we want to test the potential of GEDI for regional comprehensive LAI estimations throughout the year with a focus on its usability beyond the lifespan of the GEDI mission. We study the landscape of Hesse, Germany, with its pronounced seasonal changes. Assuming a relationship between GEDI’s PAI and Sentinel-1 and -2 data, we used a Random Forest approach together with spatial variable selection to make predictions for new Sentinel scenes. The model was trained with two years of GEDI PAI data and validated against a third year to provide a robust and temporally independent model validation. This ensures the applicability of the validation for years outside the training period, reaching a total RMSE of 1.12. Predictions for the test year showed the expected seasonal and spatial patterns indicated by RMSE values ranging between 0.75 and 1.44, depending on the land cover class. The overall prediction performance shows good agreement with the test data set of the independent year which supports our assumption that the usage of GEDI’s PAI beyond the mission lifespan is feasible for regional studies.

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3