Artificial Neural Network-Forecasted Compression Strength of Alkaline-Activated Slag Concretes

Author:

Tang Yi XuanORCID,Lee Yeong Huei,Amran MugahedORCID,Fediuk RomanORCID,Vatin NikolaiORCID,Kueh Ahmad Beng HongORCID,Lee Yee Yong

Abstract

The utilization of ordinary Portland cement (OPC) in conventional concretes is synonymous with high carbon emissions. To remedy this, an environmentally friendly concrete, alkaline-activated slag concrete (AASC), where OPC is completely replaced by ground granulated blast-furnace slag (GGBFS) industrial waste, is one of the currently pursued research interests. AASC is not commonly used in the construction industry due to limitations in experience and knowledge on the mix proportions and mechanical properties. To circumvent great labour in the experimental works toward the determination of the optimal properties, this study, therefore, presents the compressive strength prediction of AASC by employing the back-propagation artificial neural network (ANN) modelling technique. To construct this model, a sufficiently equipped experimental databank was built from the literature covering varied mix proportion effects on the compressive strength of AASC. For this, four model variants with different input parameter considerations were examined and the ideal ANN architecture for each model with the best input number–hidden layer neuron number–output number format was identified to improve its prediction accuracy. From such a setting, the most accurate prediction model with the highest determination coefficient, R2, of 0.9817 was determined, with an ANN architecture of 8-18-1 containing inputs such as GGBFS, a fine to total aggregate ratio, sodium silicate, sodium hydroxide, mixing water, silica modulus of activator, percentage of sodium oxide and water–binder ratio. The prediction accuracy of the optimal ANN model was then compared to existing ANN-based models, while the variable selection was compared to existing AASC models with other machine learning algorithms, due to limitations in the ANN-based model. To identify the parametric influence, the individual relative importance of each input variable was determined through a sensitivity analysis using the connection weight approach, whose results indicated that the silica modulus of the activator and sodium silicate greatly affected the AASC compressive strength. The proposed methodology demonstrates that the ANN-based model can predict the AASC compressive strength with a high accuracy and, consequently, aids in promoting the utilization of AASC in the construction industry as green concrete without performing destructive tests. This prediction model can also accelerate the use of AASC without using a cement binder in the concrete matrix, leading to produce a sustainable construction material.

Funder

Advanced Digital Technologies

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3