Development of a Machine Learning (ML)-Based Computational Model to Estimate the Engineering Properties of Portland Cement Concrete (PCC)

Author:

Polo-Mendoza RodrigoORCID,Martinez-Arguelles Gilberto,Peñabaena-Niebles Rita,Duque Jose

Abstract

AbstractPortland cement concrete (PCC) is the construction material most used worldwide. Hence, its proper characterization is fundamental for the daily-basis engineering practice. Nonetheless, the experimental measurements of the PCC’s engineering properties (i.e., Poisson’s Ratio -v-, Elastic Modulus -E-, Compressive Strength -ComS-, and Tensile Strength -TenS-) consume considerable amounts of time and financial resources. Therefore, the development of high-precision indirect methods is fundamental. Accordingly, this research proposes a computational model based on deep neural networks (DNNs) to simultaneously predict the v, E, ComS, and TenS. For this purpose, the Long-Term Pavement Performance database was employed as the data source. In this regard, the mix design parameters of the PCC are adopted as input variables. The performance of the DNN model was evaluated with 1:1 lines, goodness-of-fit parameters, Shapley additive explanations assessments, and running time analysis. The results demonstrated that the proposed DNN model exhibited an exactitude higher than 99.8%, with forecasting errors close to zero (0). Consequently, the machine learning-based computational model designed in this investigation is a helpful tool for estimating the PCC’s engineering properties when laboratory tests are not attainable. Thus, the main novelty of this study is creating a robust model to determine the v, E, ComS, and TenS by solely considering the mix design parameters. Likewise, the central contribution to the state-of-the-art achieved by the present research effort is the public launch of the developed computational tool through an open-access GitHub repository, which can be utilized by engineers, designers, agencies, and other stakeholders.

Funder

Departamento Administrativo de Ciencia, Tecnología e Innovación

Uninorte

Publisher

Springer Science and Business Media LLC

Reference90 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3