Adsorption and Diffusion Behaviors of CO2 and CH4 Mixtures in Different Types of Kerogens and Their Roles in Enhanced Energy Recovery

Author:

Yuan Shan,Gang Hong-Ze,Liu Yi-FanORCID,Zhou LeiORCID,Irfan Muhammad,Yang Shi-Zhong,Mu Bo-ZhongORCID

Abstract

CO2 geological sequestration in subsurface shale formations is a promising strategy to store CO2 and to increase shale gas production. The understanding of gas adsorption and diffusion mechanisms in microporous media is critical for CO2 storage-enhanced gas recovery (CS-EGR). The type of kerogens is one of the important factors that influence the adsorption and diffusion behaviors of gases. In this work, the Grand Canonical Monte Carlo and Molecular Dynamics simulations were utilized to develop kerogen models and further investigate gas and water adsorption and diffusion behavior on the type IA, IIA, and IIIA kerogen models. The results indicated that the adsorption and diffusion capacities of CO2 are larger than those of CH4. The adsorption and diffusion capacity decreased with increasing water content. However, the CO2/CH4 adsorption selectivity increased with the increase in water content. Type IIIA demonstrated the best potential for adsorption and diffusion. This study provides insights into the role of the adsorption and diffusion behavior of CO2 and CH4 mixtures on kerogens of different types under different water contents at a microscopic scale, and can facilitate further understanding of the processes involved in CO2 storage coupled with enhanced energy recovery.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3