Adsorption and Diffusion Properties of Gas in Nanopores of Kerogen: Insights from Grand Canonical Monte Carlo and Molecular Dynamics Simulations

Author:

Xiao Shouheng1,Liu Xiugang2,Li Yun3ORCID,Zheng Qiang1,Wang Ning1,Qiao Yun4,Zhang Youyin1,Yi Chuanjun1

Affiliation:

1. Research Institute of Exploration & Development, Xinjing Oilfield Company, PetroChina, Karamay 834000, China

2. School of Emergency Management and Safety Engineering, China University of Mining and Technology, Beijing 100083, China

3. Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China

4. Research Institute of Engineering Technology, Xinjing Oilfield Company, PetroChina, Karamay 834000, China

Abstract

Investigating the adsorption and diffusion processes of shale gas within the nanopores of kerogen is essential for comprehending the presence of shale gas in organic matter of shale. In this study, an organic nanoporous structure was constructed based on the unit structure of Longmaxi shale kerogen. Grand canonical Monte Carlo and molecular dynamics simulation methods were employed to explore the adsorption and diffusion mechanisms of pure CH4, CO2, and N2, as well as their binary mixtures with varying mole fractions. The results revealed that the physical adsorption characteristics of CH4, CO2, and N2 gases on kerogen adhered to the Langmuir adsorption law. The quantity of adsorbed gas molecules increased with rising pressure but decreased with increasing temperature. The variation in the heat of adsorption was also analyzed. Under identical temperature and pressure conditions, the adsorption of CH4 increased with higher mole fractions of CH4, whereas it decreased with greater mole fractions of CO2 and N2. Notably, CO2 molecules exhibited a robust interaction with kerogen molecules compared to the adsorption properties of CH4 and N2. Furthermore, the self-diffusion coefficient of gas within kerogen nanopores gradually decreased with increasing pressure or decreasing temperature. The diffusion capacity of gas molecules followed the descending order N2 > CH4 > CO2 under the same pressure and temperature conditions.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3