A CHEMTAX Study Based on Picoeukaryotic Phytoplankton Pigments and Next-Generation Sequencing Data from the Ulleungdo–Dokdo Marine System of the East Sea (Japan Sea): Improvement of Long-Unresolved Underdetermined Bias

Author:

Hyun Myung JinORCID,Won Jongseok,Choi Dong HanORCID,Lee Howon,Lee Yeonjung,Lee Charity Mijin,Park Chan Hong,Noh Jae HoonORCID

Abstract

The CHEMTAX program has been widely used to estimate community composition based on major pigment concentrations in seawater. However, because CHEMTAX is an underdetermined optimization algorithm, underdetermined bias has remained an unsolved problem since its development in 1996. The risk of producing biased results increases when analyzing the picophytoplankton community; therefore, this study tested a new method for avoiding biased CHEMTAX results using the picophytoplankton community around the East Sea (Japan Sea). This method involves building a linear model between pigment concentration data and community composition data based on DNA sequencing to predict the pigment range for each operational taxonomic unit, based on the 95% prediction interval. Finally, the range data are transformed into an initial ratio and ratio limits for CHEMTAX analysis. Three combinations of initial ratios and ratio limits were tested to determine whether the modeled initial ratio and ratio limit could prevent underdetermined bias in the CHEMTAX estimates; these combinations were the modeled initial ratio and ratio limit, the modeled initial ratio with a default ratio limit of 500 s, and an initial ratio from previous research with the default ratio limit. The final ratio and composition data for each combination were compared with Bayesian compositional estimator-based final ratio and composition data, which are robust against underdetermined bias. Only CHEMTAX analysis using the modeled initial ratio and ratio limit was unbiased; all other combinations showed significant signs of bias. Therefore, the findings in this study indicate that ratio limits and the initial ratio are equally important in the CHEMTAX analysis of biased datasets. Moreover, we obtained statistically supported initial ratios and ratio limits through linear modeling of pigment concentrations and 16s rDNA composition data.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3