Impact of Complex Oceanographic Features on Seasonal Phytoplankton Community and Biodiversity from 2018 to 2020 in the Vicinity of Dokdo (Island), Offshore Korea

Author:

Baek Seung Ho1ORCID,Lee Minji12,Lee Chung Hyeon1,Park Chan Hong3,Kim Yun-Bae4,Kang Jung Hoon1ORCID,Lim Young Kyun1

Affiliation:

1. Ecological Risk Research Department, Korea Institute of Ocean Science and Technology (KIOST), Geoje 53201, Republic of Korea

2. National Institute of Fisheries Science, South Sea Fisheries Research Institute, Yeosu 59780, Republic of Korea

3. Dokdo Research Center, East Sea Research Institute, KIOST, Uljin 36315, Republic of Korea

4. Ulleungdo/Dokdo Ocean Science Station, Korea Institute of Ocean Science and Technology, Ulleungdo 40205, Republic of Korea

Abstract

Dokdo, a volcanic island located in offshore waters, is significantly influenced by various currents and the island effect resulting from upwelling events. Despite these factors, there is a limited understanding of the seasonal changes in phytoplankton populations and their relationship with the environmental factors in the waters around Dokdo, even during dramatic shifts in phytoplankton dynamics. We focused on seasonal oceanographic features over three years (2018, 2019, and 2020) to understand the phytoplankton community structure and seasonal species succession. Winter, characterized by thorough mixing, results in high nutrient levels, leading to increased phytoplankton biomass. The dominance of the large-sized diatom Chaetoceros spp. contributes to relatively low diversity (H’: 1.14 ± 0.31). In contrast to the typical coastal waters, spring exhibits dominance by the small nano-flagellates and Cryptomonas spp. associated with a lack of surface nutrients due to increased water temperature. Summer, characterized by strong stratification, shows low phytoplankton biomass but high Chl. a concentrations, possibly influenced by picoplankton and the emergence of dinoflagellates, such as Gyrodinium sp. and Katodinium sp., which increases diversity (H’: 2.18 ± 0.28). In autumn, there is typically a phytoplankton bloom, but in 2019, an unusually low biomass occurred. This was likely due to the intrusion of deep, cold water from the bottom and low-salinity Changjiang diluted water (CDW) from the surface, increasing the water’s stability. This, in turn, led to nutrient depletion, contributing to a rise in diversity (H’: 1.14 ± 0.31). These environmentally complex waters around Dokdo result in a distinct pattern of biodiversity indices, with the highest in summer and the lowest in winter, differing from typical temperate waters. In conclusion, this research highlights the substantial influence of distinctive oceanographic features and nutrient dynamics on the phytoplankton biomass and biodiversity in the Ulleung Basin and Dokdo region. Understanding these patterns is vital for the effective management of marine ecosystems and fisheries resources, emphasizing the necessity for continued long-term monitoring in the vicinity of the Dokdo area.

Funder

Ministry of Oceans and Fisheries, Republic of Korea

Korea Institute of Ocean Science and Technology

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Agricultural and Biological Sciences (miscellaneous),Ecological Modeling,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3