Dynamic Modeling of Underwater Snake Robot by Hybrid Rigid-Soft Actuation

Author:

Zhang JunhaoORCID,Chen YinglongORCID,Liu Yi,Gong Yongjun

Abstract

For decades, underwater vehicles have been performing underwater operations, which are critical to the development and upgrading of underwater robots. With the advancement of technology, various types of robots have been developed. The underwater robotic snake is a bioinspired addition to the family of underwater robotic vehicles. In this paper, we propose an innovative underwater snake robot actuated by rigid propulsions and soft joints, which can improve the swimming efficiency and flexibility of the robot and reduce the probability of collision leading to damage. Existing math models of robotic snakes typically incorporate only planar motion, rarely considering spatial motion. So, we formulate a complete three-dimensional dynamic model for the robotic snake, which is extended by deriving expressions for the geometric Jacobians. This modeling approach is well suited since it provides compact matrix expressions and easy implementation. We use the constant curvature method to describe the configuration of the soft joint, use the Lagrangian method to obtain its dynamic characteristics, and focus on deriving the visco-hyperelastic mechanical energy of the soft material. Next, the local dynamics of soft members are extended as a nonholonomic constraint form for modeling the snake robot. Finally, the multi-modal swimming behavior of the robot has been verified by simulations, including forward and backward rectilinear motion, yaw turning, pitch motion, and spiral rising motion. The overall results demonstrate the effectiveness and the versatility of the developed dynamic model in the prediction of the robot trajectory, position, orientation, and velocity.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Open Foundation of the State Key Laboratory of Fluid Power and Mechatronic Systems

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference51 articles.

1. A Survey of Underwater Multi-Robot Systems;Zhou;IEEE/CAA J. Autom. Sin.,2021

2. A hybrid underwater robot for multidisciplinary investigation of the ocean twilight zone;Yoerger;Sci. Robot.,2021

3. Huvenne, V.A., Robert, K., Marsh, L., Iacono, C.L., le Bas, T., and Wynn, R.B. (2018). Submarine Geomorphology, Springer.

4. The potential of low-cost ROV for use in deep-sea mineral, ore prospecting and monitoring;Teague;Ocean. Eng.,2018

5. Sparus II AUV—A hovering vehicle for seabed inspection;Carreras;IEEE J. Ocean. Eng.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3