Tri-CNN: A Three Branch Model for Hyperspectral Image Classification

Author:

Alkhatib Mohammed Q.ORCID,Al-Saad MinaORCID,Aburaed NourORCID,Almansoori SaeedORCID,Zabalza JaimeORCID,Marshall Stephen,Al-Ahmad Hussain

Abstract

Hyperspectral Image (HSI) classification methods that use Deep Learning (DL) have proven to be effective in recent years. In particular, Convolutional Neural Networks (CNNs) have demonstrated extremely powerful performance in such tasks. However, the lack of training samples is one of the main contributors to low classification performance. Traditional CNN-based techniques under-utilize the inter-band correlations of HSI because they primarily use 2D-CNNs for feature extraction. Contrariwise, 3D-CNNs extract both spectral and spatial information using the same operation. While this overcomes the limitation of 2D-CNNs, it may lead to insufficient extraction of features. In order to overcome this issue, we propose an HSI classification approach named Tri-CNN which is based on a multi-scale 3D-CNN and three-branch feature fusion. We first extract HSI features using 3D-CNN at various scales. The three different features are then flattened and concatenated. To obtain the classification results, the fused features then traverse a number of fully connected layers and eventually a softmax layer. Experimental results are conducted on three datasets, Pavia University (PU), Salinas scene (SA) and GulfPort (GP) datasets, respectively. Classification results indicate that our proposed methodology shows remarkable performance in terms of the Overall Accuracy (OA), Average Accuracy (AA), and Kappa metrics when compared against existing methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Two-Stream spectral-spatial convolutional capsule network for Hyperspectral image classification;International Journal of Applied Earth Observation and Geoinformation;2024-03

2. Land use/land cover (LULC) classification using deep-LSTM for hyperspectral images;The Egyptian Journal of Remote Sensing and Space Sciences;2024-03

3. Hierarchical structural graph neural network with local relation enhancement for hyperspectral image classification;Digital Signal Processing;2024-03

4. A U-Shaped Convolution-Aided Transformer with Double Attention for Hyperspectral Image Classification;Remote Sensing;2024-01-11

5. Enhancing Hyperspectral Image Classification: A Hybrid CNN Approach with Spatial and Channel Attention Mechanisms;2023 20th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP);2023-12-15

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3