A U-Shaped Convolution-Aided Transformer with Double Attention for Hyperspectral Image Classification

Author:

Qin Ruiru1,Wang Chuanzhi1ORCID,Wu Yongmei1,Du Huafei1,Lv Mingyun1

Affiliation:

1. School of Aeronautic Science and Engineering, Beihang University, Beijing 100191, China

Abstract

Convolutional neural networks (CNNs) and transformers have achieved great success in hyperspectral image (HSI) classification. However, CNNs are inefficient in establishing long-range dependencies, and transformers may overlook some local information. To overcome these limitations, we propose a U-shaped convolution-aided transformer (UCaT) that incorporates convolutions into a novel transformer architecture to aid classification. The group convolution is employed as parallel local descriptors to extract detailed features, and then the multi-head self-attention recalibrates these features in consistent groups, emphasizing informative features while maintaining the inherent spectral–spatial data structure. Specifically, three components are constructed using particular strategies. First, the spectral groupwise self-attention (spectral-GSA) component is developed for spectral attention, which selectively emphasizes diagnostic spectral features among neighboring bands and reduces the spectral dimension. Then, the spatial dual-scale convolution-aided self-attention (spatial-DCSA) encoder and spatial convolution-aided cross-attention (spatial-CCA) decoder form a U-shaped architecture for per-pixel classifications over HSI patches, where the encoder utilizes a dual-scale strategy to explore information in different scales and the decoder adopts the cross-attention for information fusion. Experimental results on three datasets demonstrate that the proposed UCaT outperforms the competitors. Additionally, a visual explanation of the UCaT is given, showing its ability to build global interactions and capture pixel-level dependencies.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3