Forcing Mechanisms of the Interannual Sea Level Variability in the Midlatitude South Pacific during 2004–2020

Author:

Germineaud C.ORCID,Volkov D. L.ORCID,Cravatte S.,Llovel W.ORCID

Abstract

Over the past few decades, the global mean sea level rise and superimposed regional fluctuations of sea level have exerted considerable stress on coastal communities, especially in low-elevation regions such as the Pacific Islands in the western South Pacific Ocean. This made it necessary to have the most comprehensive understanding of the forcing mechanisms that are responsible for the increasing rates of extreme sea level events. In this study, we explore the causes of the observed sea level variability in the midlatitude South Pacific on interannual time scales using observations and atmospheric reanalyses combined with a 1.5 layer reduced-gravity model. We focus on the 2004–2020 period, during which the Argo’s global array allowed us to assess year-to-year changes in steric sea level caused by thermohaline changes in different depth ranges (from the surface down to 2000 m). We find that during the 2015–2016 El Niño and the following 2017–2018 La Niña, large variations in thermosteric sea level occurred due to temperature changes within the 100–500 dbar layer in the midlatitude southwest Pacific. In the western boundary region (from 30°S to 40°S), the variations in halosteric sea level between 100 and 500 dbar were significant and could have partially balanced the corresponding changes in thermosteric sea level. We show that around 35°S, baroclinic Rossby waves forced by the open-ocean wind-stress forcing account for 40 to 75% of the interannual sea level variance between 100°W and 180°, while the influence of remote sea level signals generated near the Chilean coast is limited to the region east of 100°W. The contribution of surface heat fluxes on interannual time scales is also considered and shown to be negligible.

Funder

NASA Ocean Surface Topography Science Team program

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3