Affiliation:
1. Department of Computer Science and Technology, Harbin Engineering University, Harbin 150009, China
2. Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China
Abstract
This paper develops a framework for geolocating ground-based moving targets with images taken from dual unmanned aerial vehicles (UAVs). Unlike the usual moving-target geolocation methods that rely heavily on accurate navigation state sensors or assumptions of the known target’s altitude, the proposed framework does not have the same limitations and performs geolocation of moving targets utilizing dual UAVs equipped with the low-quality navigation state sensors. Considering the Gaussian measurement errors and yaw-angle measurement bias provided by low-quality sensors, we first propose an epipolar constraint-based corresponding-point-matching method, which enables the historical measurement data to be used to estimate the current position of the moving target; after that, we propose a target altitude estimation method based on multiview geometry, which utilizes multiple images, including historical images, to estimate the altitude of the moving target; finally, considering the negative influence of yaw-angle measurement bias on the processes of target altitude estimation and parameter regression, we take advantage of multiple iterations among the two processes to accurately estimate the moving target’s two-dimensional position and the yaw-angle measurement biases of two UAVs. The effectiveness and practicability of the framework proposed in this paper are proved by simulation experiments and actual flight experiments.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献