Affiliation:
1. Defense Innovation Institute, Chinese Academy of Military Science, Beijing 100071, China
2. Intelligent Game and Decision Laboratory, Beijing 100071, China
Abstract
Efficient exploration is a critical issue in swarm UAVs with substantial research interest due to its applications in search and rescue missions. In this study, we propose a cooperative exploration approach that uses multiple unmanned aerial vehicles (UAVs). Our approach allows UAVs to explore separate areas dynamically, resulting in increased efficiency and decreased redundancy. We use a novel dynamic centroid-based method to partition the 3D working area for each UAV, with each UAV generating new targets in its partitioned area only using the onboard computational resource. To ensure the cooperation and exploration of the unknown, we use a next-best-view (NBV) method based on rapidly-exploring random tree (RRT), which generates a tree in the partitioned area until a threshold is reached. We compare this approach with three classical methods using Gazebo simulation, including a Voronoi-based area partition method, a coordination method for reducing scanning repetition between UAVs, and a greedy method that works according to its exploration planner without any interaction. We also conduct practical experiments to verify the effectiveness of our proposed method.
Funder
National Natural Science Foundation of China
Subject
Artificial Intelligence,Computer Science Applications,Aerospace Engineering,Information Systems,Control and Systems Engineering
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献