Improved In-Flight Estimation of Inertial Biases through CDGNSS/Vision Based Cooperative Navigation

Author:

Causa FlaviaORCID,Fasano Giancarmine

Abstract

This paper discusses the exploitation of a cooperative navigation strategy for improved in-flight estimation of inertial sensors biases on board unmanned aerial vehicles. The proposed multi-vehicle technique is conceived for a “chief” Unmanned Aerial Vehicle (UAV) and relies on one or more deputy aircrafts equipped with Global Navigation Satellite System (GNSS) antennas for differential positioning which also act as features for visual tracking. Combining carrier-phase differential GNSS and visual estimates, it is possible to retrieve accurate inertial-independent attitude information, thus potentially enabling improved bias estimation. Camera and carrier-phase differential GNSS measurements are integrated within a 15 states extended Kalman filter. Exploiting an ad hoc developed numerical environment, the paper analyzes the performance of the cooperative approach for inertial biases estimation as a function of number of deputies, formation geometry and distances, and absolute and relative dynamics. It is shown that exploiting two deputies it is possible to improve biases estimation, while a single deputy can be effective if changes of relative geometry and dynamics are also considered. Experimental proofs of concept based on two multi-rotors flying in formation are presented and discussed. The proposed framework is applicable beyond the domain of small UAVs.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cooperative Positioning Method of a Multi-UAV Based on an Adaptive Fault-Tolerant Federated Filter;Sensors;2023-10-30

2. UAV-based LiDAR Mapping with Galileo-GPS PPP Processing and Cooperative Navigation;2022 International Conference on Unmanned Aircraft Systems (ICUAS);2022-06-21

3. Distributed Cooperative Navigation for Unmanned Aerial System Based on Dynamic Priority;2022 29th Saint Petersburg International Conference on Integrated Navigation Systems (ICINS);2022-05-30

4. Path Planning and Static Obstacle Avoidance for Unmanned Aerial Systems;Advancements in Smart Computing and Information Security;2022

5. AMPERE: exploiting Galileo for electrical asset mapping in emerging countries;2021 IEEE 8th International Workshop on Metrology for AeroSpace (MetroAeroSpace);2021-06-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3