Customer Loyalty Improves the Effectiveness of Recommender Systems Based on Complex Network

Author:

Bai Yun,Jia Suling,Wang Shuangzhe,Tan Binkai

Abstract

Inferring customers’ preferences and recommending suitable products is a challenging task for companies, although recommender systems are constantly evolving. Loyalty is an indicator that measures the preference relationship between customers and products in the field of marketing. To this end, the aim of this study is to explore whether customer loyalty can improve the accuracy of the recommender system. Two algorithms based on complex networks are proposed: a recommendation algorithm based on bipartite graph and PersonalRank (BGPR), and a recommendation algorithm based on single vertex set network and DeepWalk (SVDW). In both algorithms, loyalty is taken as an attribute of the customer, and the relationship between customers and products is abstracted into the network topology. During the random walk among nodes in the network, product recommendations for customers are completed. Taking a real estate group in Malaysia as an example, the experimental results verify that customer loyalty can indeed improve the accuracy of the recommender system. We can also conclude that companies are more effective at recommending customers with moderate loyalty levels.

Publisher

MDPI AG

Subject

Information Systems

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3