Abstract
In the industrial automated production line, how to use the existing low-cost pneumatic equipment to obtain the best positioning effect has become a significant engineering problem. In this paper, a differential switching method is proposed in a pneumatic servo system consisting of four low-cost on–off valves for more precise control and lower prices. All valves are simultaneously open at the initial stage of each control period, and the differential closing time of the desired valves is calculated through the theoretical models. A sliding mode controller is applied with the proposed method, and the system stability is proven. The real-time control setup including three software layers is proposed to implement the algorithm. Several experiments are performed on a real-time embedded controller. Average 0.83% overshoot and 0.18 mm steady-state error are observed in the step response experiment. The highest frequency of sine wave that can be tracked is 1 Hz, and the average error is 1.68 mm. The maximum steady-state error is about 0.5 mm in the step response under payloads of 5.25 kg. All the simulation and experimental results prove the effectiveness of the control method.
Funder
Funding of the 2020 Fujian Province Young and Middle-aged Teacher Education Research Project
Subject
Control and Optimization,Control and Systems Engineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献