Learn to Steer through Deep Reinforcement Learning

Author:

Wu Keyu,Esfahani Mahdi,Yuan Shenghai,Wang Han

Abstract

It is crucial for robots to autonomously steer in complex environments safely without colliding with any obstacles. Compared to conventional methods, deep reinforcement learning-based methods are able to learn from past experiences automatically and enhance the generalization capability to cope with unseen circumstances. Therefore, we propose an end-to-end deep reinforcement learning algorithm in this paper to improve the performance of autonomous steering in complex environments. By embedding a branching noisy dueling architecture, the proposed model is capable of deriving steering commands directly from raw depth images with high efficiency. Specifically, our learning-based approach extracts the feature representation from depth inputs through convolutional neural networks and maps it to both linear and angular velocity commands simultaneously through different streams of the network. Moreover, the training framework is also meticulously designed to improve the learning efficiency and effectiveness. It is worth noting that the developed system is readily transferable from virtual training scenarios to real-world deployment without any fine-tuning by utilizing depth images. The proposed method is evaluated and compared with a series of baseline methods in various virtual environments. Experimental results demonstrate the superiority of the proposed model in terms of average reward, learning efficiency, success rate as well as computational time. Moreover, a variety of real-world experiments are also conducted which reveal the high adaptability of our model to both static and dynamic obstacle-cluttered environments. A video of our experiments is available at https://youtu.be/yixnmFXIKf4 and http://v.youku.com/vshow/idXMzg1ODYwMzM5Ng.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3