Semantic Segmentation and Depth Estimation Based on Residual Attention Mechanism

Author:

Ji Naihua1,Dong Huiqian1,Meng Fanyun1,Pang Liping2

Affiliation:

1. School of Information and Control Engineering, Qingdao University of Technology, Qingdao 266033, China

2. School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China

Abstract

Semantic segmentation and depth estimation are crucial components in the field of autonomous driving for scene understanding. Jointly learning these tasks can lead to a better understanding of scenarios. However, using task-specific networks to extract global features from task-shared networks can be inadequate. To address this issue, we propose a multi-task residual attention network (MTRAN) that consists of a global shared network and two attention networks dedicated to semantic segmentation and depth estimation. The convolutional block attention module is used to highlight the global feature map, and residual connections are added to prevent network degradation problems. To ensure manageable task loss and prevent specific tasks from dominating the training process, we introduce a random-weighted strategy into the impartial multi-task learning method. We conduct experiments to demonstrate the effectiveness of the proposed method.

Funder

Project of Huzhou Science and Technology

High-level Talents Innovation Support Program of Dalian

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3