ESAMask: Real-Time Instance Segmentation Fused with Efficient Sparse Attention

Author:

Zhang Qian1,Chen Lu1,Shao Mingwen1,Liang Hong1,Ren Jie1

Affiliation:

1. College of Computer Science and Technology, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Instance segmentation is a challenging task in computer vision, as it requires distinguishing objects and predicting dense areas. Currently, segmentation models based on complex designs and large parameters have achieved remarkable accuracy. However, from a practical standpoint, achieving a balance between accuracy and speed is even more desirable. To address this need, this paper presents ESAMask, a real-time segmentation model fused with efficient sparse attention, which adheres to the principles of lightweight design and efficiency. In this work, we propose several key contributions. Firstly, we introduce a dynamic and sparse Related Semantic Perceived Attention mechanism (RSPA) for adaptive perception of different semantic information of various targets during feature extraction. RSPA uses the adjacency matrix to search for regions with high semantic correlation of the same target, which reduces computational cost. Additionally, we design the GSInvSAM structure to reduce redundant calculations of spliced features while enhancing interaction between channels when merging feature layers of different scales. Lastly, we introduce the Mixed Receptive Field Context Perception Module (MRFCPM) in the prototype branch to enable targets of different scales to capture the feature representation of the corresponding area during mask generation. MRFCPM fuses information from three branches of global content awareness, large kernel region awareness, and convolutional channel attention to explicitly model features at different scales. Through extensive experimental evaluation, ESAMask achieves a mask AP of 45.4 at a frame rate of 45.2 FPS on the COCO dataset, surpassing current instance segmentation methods in terms of the accuracy–speed trade-off, as demonstrated by our comprehensive experimental results. In addition, the high-quality segmentation results of our proposed method for objects of various classes and scales can be intuitively observed from the visualized segmentation outputs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3