Robust Lidar-Inertial Odometry with Ground Condition Perception and Optimization Algorithm for UGV

Author:

Zhao ZixuORCID,Zhang Yucheng,Shi Jinglin,Long Long,Lu Zaiwang

Abstract

Unmanned ground vehicles (UGVs) are making more and more progress in many application scenarios in recent years, such as exploring unknown wild terrain, working in precision agriculture and serving in emergency rescue. Due to the complex ground conditions and changeable surroundings of these unstructured environments, it is challenging for these UGVs to obtain robust and accurate state estimations by using sensor fusion odometry without prior perception and optimization for specific scenarios. In this paper, based on an error-state Kalman filter (ESKF) fusion model, we propose a robust lidar-inertial odometry with a novel ground condition perception and optimization algorithm specifically designed for UGVs. The probability distribution gained from the raw inertial measurement unit (IMU) measurements during a certain time period and the state estimation of ESKF were both utilized to evaluate the flatness of ground conditions in real-time; then, by analyzing the relationship between the current ground condition and the accuracy of the state estimation, the tightly coupled lidar-inertial odometry was dynamically optimized further by adjusting the related parameters of the processing algorithm of the lidar points to obtain robust and accurate ego-motion state estimations of UGVs. The method was validated in various types of environments with changeable ground conditions, and the robustness and accuracy are shown through the consistent accurate state estimation in different ground conditions compared with the state-of-art lidar-inertial odometry systems.

Funder

Chinese Academy of Sciences

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3