Surveillance Unmanned Ground Vehicle Path Planning with Path Smoothing and Vehicle Breakdown Recovery

Author:

Parsons Tyler1ORCID,Baghyari Farhad1,Seo Jaho1ORCID,Kim Byeongjin2ORCID,Kim Mingeuk2,Lee Hanmin2

Affiliation:

1. Department of Automotive and Mechatronics Engineering, Ontario Tech University, Oshawa, ON L1G 0C5, Canada

2. Department of Industrial Machinery DX, Korea Institute of Machinery and Materials (KIMM), Daejeon 34103, Republic of Korea

Abstract

As unmanned ground vehicles (UGV) continue to be adapted to new applications, an emerging area lacks proper guidance for global route optimization methodology. This area is surveillance. In autonomous surveillance applications, a UGV is equipped with a sensor that receives data within a specific range from the vehicle while it traverses the environment. In this paper, the ant colony optimization (ACO) algorithm was adapted to the UGV surveillance problem to solve for optimal paths within sub-areas. To do so, the problem was modeled as the covering salesman problem (CSP). This is one of the first applications using ACO to solve the CSP. Then, a genetic algorithm (GA) was used to schedule a fleet of UGVs to scan several sub-areas such that the total distance is minimized. Initially, these paths are infeasible because of the sharp turning angles. Thus, they are improved using two methods of path refinement (namely, the corner-cutting and Reeds–Shepp methods) such that the kinematic constraints of the vehicles are met. Several test case scenarios were developed for Goheung, South Korea, to validate the proposed methodology. The promising results presented in this article highlight the effectiveness of the proposed methodology for UGV surveillance applications.

Funder

National Research Foundation of Korea (NRF) grant funded by the Ministry of Science and ICT of Korea government

Korea Institute of Machinery and Materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3