Call Details Record Analysis: A Spatiotemporal Exploration toward Mobile Traffic Classification and Optimization

Author:

Sultan KashifORCID,Ali HazratORCID,Ahmad AdeelORCID,Zhang ZhongshanORCID

Abstract

The information contained within Call Details records (CDRs) of mobile networks can be used to study the operational efficacy of cellular networks and behavioural pattern of mobile subscribers. In this study, we extract actionable insights from the CDR data and show that there exists a strong spatiotemporal predictability in real network traffic patterns. This knowledge can be leveraged by the mobile operators for effective network planning such as resource management and optimization. Motivated by this, we perform the spatiotemporal analysis of CDR data publicly available from Telecom Italia. Thus, on the basis of spatiotemporal insights, we propose a framework for mobile traffic classification. Experimental results show that the proposed model based on machine learning technique is able to accurately model and classify the network traffic patterns. Furthermore, we demonstrate the application of such insights for resource optimisation.

Publisher

MDPI AG

Subject

Information Systems

Reference35 articles.

1. More than 50 Billion Connected Devices,2011

2. Big Data Perspective and Challenges in Next Generation Networks

3. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2010–2015 White Paper,2011

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Information theory based clustering of cellular network usage data for the identification of representative urban areas;Digital Communications and Networks;2023-07

2. Orthogonal projection for anomaly detection in networking datasets;Journal of Ambient Intelligence and Humanized Computing;2023-04-21

3. Mobile Phone Data: A Survey of Techniques, Features, and Applications;Sensors;2023-01-12

4. Analysis Of Mobile Users' Activities Using Mean-Normalization Method;J APPL SCI ENG;2023

5. Analyzing the Social behavior of mobile Subscribers using CDR and Neo4j technology;2022 IEEE 2nd International Maghreb Meeting of the Conference on Sciences and Techniques of Automatic Control and Computer Engineering (MI-STA);2022-05-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3