Mobile Phone Data: A Survey of Techniques, Features, and Applications

Author:

Okmi Mohammed,Por Lip YeeORCID,Ang Tan Fong,Ku Chin SoonORCID

Abstract

Due to the rapid growth in the use of smartphones, the digital traces (e.g., mobile phone data, call detail records) left by the use of these devices have been widely employed to assess and predict human communication behaviors and mobility patterns in various disciplines and domains, such as urban sensing, epidemiology, public transportation, data protection, and criminology. These digital traces provide significant spatiotemporal (geospatial and time-related) data, revealing people’s mobility patterns as well as communication (incoming and outgoing calls) data, revealing people’s social networks and interactions. Thus, service providers collect smartphone data by recording the details of every user activity or interaction (e.g., making a phone call, sending a text message, or accessing the internet) done using a smartphone and storing these details on their databases. This paper surveys different methods and approaches for assessing and predicting human communication behaviors and mobility patterns from mobile phone data and differentiates them in terms of their strengths and weaknesses. It also gives information about spatial, temporal, and call characteristics that have been extracted from mobile phone data and used to model how people communicate and move. We survey mobile phone data research published between 2013 and 2021 from eight main databases, namely, the ACM Digital Library, IEEE Xplore, MDPI, SAGE, Science Direct, Scopus, SpringerLink, and Web of Science. Based on our inclusion and exclusion criteria, 148 studies were selected.

Funder

Malaysian Ministry of Higher Education through the Fundamental Research Grant Scheme

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3