Evaluating the Effect of New Gas Solubility and Bubble Point Pressure Models on PVT Parameters and Optimizing Injected Gas Rate in Gas-Lift Dual Gradient Drilling

Author:

Golsanami NaserORCID,Gong BinORCID,Negahban Sajjad

Abstract

Gas-lift dual gradient drilling (DGD) is a solution for the complex problems caused by narrow drilling windows in deepwater drilling. Investigations are lacking on using oil-based drilling fluid in DGD, which is the principal novel idea of the present study. This research compares the results obtained from two new models with those of Standing’s correlations for solubility and bubble point pressure. Nitrogen was selected as the injection gas, then the PVT behavior of drilling fluid (oil/water/Nitrogen) in gas-lift DGD was evaluated and compared by coding in MATLAB. Then, these results were used to calculate the bottom hole pressure and finally investigate the optimization of injected gas flow rate. According to the achieved results, the Standing model has some errors in evaluating the PVT behavior of “Nitrogen and oil-based drilling fluids” and is not recommended for the mixtures in the gas-lift DGD. Regarding optimizing gas flow rate, a discrepancy was observed between pressure values obtained from the new models and the Standing model for the case of high liquid flow rates at low gas flow rates because of the difference in PVT parameters. The developed codes are deposited on an online data repository for future users. This study lays the foundation for better planning of drilling in deepwater drilling projects.

Funder

Taishan Scholar Talent Team Support Plan for Advantaged and Unique Discipline Areas

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3