Research on the Stability of the Spacer Fluid Interface in Dual-Layer Pipe Dual-Gradient Drilling

Author:

Wang Guorong12,Li Xiaolei1,Zhong Lin1,Lv Zhiyu1

Affiliation:

1. College of Mechanical Engineering, Southwest Petroleum University, Chengdu 610500, China

2. National Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Southwest Petroleum University, Chengdu 610500, China

Abstract

Dual-layer pipe dual-gradient drilling technology is an emerging technology for solving the problem of the narrow safety density window in deepwater drilling. The unstable spacer fluid interface in this technology directly affects the dual-gradient pressure system in the annulus, causing changes in the drilling mud performance and affecting the control of bottom hole pressure and rock removal with drilling mud. Therefore, the key to the stable operation of dual-layer pipe dual-gradient drilling technology is to maintain the stability of the spacer fluid interface. Based on this, a seawater-spacer fluid-drilling mud annular flow model was established in this study, with a bottom hole pressure control step of 0.2 MPa, and the spacer fluid height after a single control was used as the evaluation index to study the influence of annular flow velocity, the spacer fluid properties, and the drill string rotation speed on the stability of the spacer fluid interface. The results show that in the determined conditions of the seawater and drilling mud system, the annular fluid flow rate and the physical parameters of the spacer fluid are the main factors affecting the stability of the spacer fluid interface. When the annular fluid flow rate increased within the range of 0.04~0.2 m/s, the liquidity index of the spacer fluid increased between 0.5 and 0.9, the consistency coefficient increased in the range of 0.6 to 1.4 Pa⋅sn, and the stability of the spacer fluid interface decreased. However, the stability of the spacer fluid interface increased with the increase in its density in the range of 1100~1500 kg/m3. The results obtained in this study can provide a reference for selecting the operating parameters to ensure the stable operation of dual-gradient pressure systems.

Funder

National Key Research and Development Program of China

Sichuan Provincial Department of Science and Technology Natural Science Fund Innovative Research Group Project

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3