Design of Decision Tree Structure with Improved BPNN Nodes for High-Accuracy Locomotion Mode Recognition Using a Single IMU

Author:

Han YangORCID,Liu Chunbao,Yan Lingyun,Ren Lei

Abstract

Smart wearable robotic system, such as exoskeleton assist device and powered lower limb prostheses can rapidly and accurately realize man–machine interaction through locomotion mode recognition system. However, previous locomotion mode recognition studies usually adopted more sensors for higher accuracy and effective intelligent algorithms to recognize multiple locomotion modes simultaneously. To reduce the burden of sensors on users and recognize more locomotion modes, we design a novel decision tree structure (DTS) based on using an improved backpropagation neural network (IBPNN) as judgment nodes named IBPNN-DTS, after analyzing the experimental locomotion mode data using the original values with a 200-ms time window for a single inertial measurement unit to hierarchically identify nine common locomotion modes (level walking at three kinds of speeds, ramp ascent/descent, stair ascent/descent, Sit, and Stand). In addition, we reduce the number of parameters in the IBPNN for structure optimization and adopted the artificial bee colony (ABC) algorithm to perform global search for initial weight and threshold value to eliminate system uncertainty because randomly generated initial values tend to result in a failure to converge or falling into local optima. Experimental results demonstrate that recognition accuracy of the IBPNN-DTS with ABC optimization (ABC-IBPNN-DTS) was up to 96.71% (97.29% for the IBPNN-DTS). Compared to IBPNN-DTS without optimization, the number of parameters in ABC-IBPNN-DTS shrank by 66% with only a 0.58% reduction in accuracy while the classification model kept high robustness.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference42 articles.

1. Human Motion Intent Recognition Based on Kernel Principal Component Analysis and Relevance Vector Machine;Liu;Robot,2017

2. sEMG Pattern Recognition Based on Multi Feature Fusion of Wavelet Transform;Yu;Chin. J. Sens. Actuators,2016

3. Research on Classification Algorithm of Reduced Support Vector Machine for Low Limb Movement Recognition;Wu;China Mech. Eng.,2011

4. Multi-channel sEMG Time Series Analysis Based Human Motion Recognition Method;Tong;Acta Autom. Sin.,2014

5. Real-Time Locomotion Mode Recognition Employing Correlation Feature Analysis Using EMG Pattern

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3