Abstract
Conformational change of cytochrome c (cyt c) caused by interaction with cardiolipin (CL) is an important step during apoptosis, but the underlying mechanism is controversial. To comprehensively clarify the structural transformations of cyt c upon interaction with CL and avoid the unpredictable alias that might come from protein labeling or mutations, the conformation of purified yeast iso–1 cyt c with natural isotopic abundance in different contents of CL was measured by using NMR spectroscopy, in which the trimethylated group of the protein was used as a natural probe. The data demonstrate that cyt c has two partially unfolded conformations when interacted with CL: one with Fe–His33 coordination and the other with a penta–coordination heme. The Fe–His33 coordination conformation can be converted into a penta–coordination heme conformation in high content of CL. The structure of cyt c becomes partially unfolded with more exposed heme upon interaction with CL, suggesting that cyt c prefers a high peroxidase activity state in the mitochondria, which, in turn, makes CL easy to be oxidized, and causes the release of cyt c into the cytoplasm as a trigger in apoptosis.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献