CO2 Decomposition in Microwave Discharge Created in Liquid Hydrocarbon

Author:

Batukaev Timur S.1,Bilera Igor V.1,Krashevskaya Galina V.12,Lebedev Yuri A.1ORCID,Nazarov Nurlan A.1

Affiliation:

1. A.V. Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences (TIPS RAS), Leninsky Ave. 29, Moscow 119991, Russia

2. LAPLAZ, National Research Nuclear University MEPhI, Kashirskoe Shosse, 31, Moscow 115409, Russia

Abstract

The task of CO2 decomposition is one of the components of the problem associated with global warming. One of the promising directions of its solution is the use of low-temperature plasma. For these purposes, different types of discharges are used. Microwave discharge in liquid hydrocarbons has not been studied before for this problem. This paper presents the results of a study of microwave discharge products in liquid Nefras C2 80/120 (petroleum solvent, a mixture of light hydrocarbons with a boiling point from 33 to 205 °C) when CO2 is introduced into the discharge zone, as well as the results of a study of the discharge by optical emission spectroscopy and shadow photography methods. The main gas products are H2, C2H2, C2H4, CH4, CO2, and CO. No oxygen was found in the products. The mechanisms of CO2 decomposition in the discharge are considered. The formation of H2 occurs simultaneously with the decomposition of CO2 in the discharge, with a volumetric rate of up to 475 mL/min and energy consumption of up to 81.4 NL/kWh.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3