Hardware-Based Architecture for DNN Wireless Communication Models

Author:

Tran Van Duy12,Lam Duc Khai12ORCID,Tran Thi Hong3

Affiliation:

1. Computer Engineering Department, University of Information Technology, Ho Chi Minh City 700000, Vietnam

2. Vietnam National University, Ho Chi Minh City 700000, Vietnam

3. Graduate School of Enginering, Osaka City University, Osaka 558-8585, Japan

Abstract

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for wireless communication systems. However, because of the problem of a high peak-to-average power ratio (PAPR), OFDM symbols can be distorted at the MIMO OFDM transmitter. It degrades the signal detection and channel estimation performance at the MIMO OFDM receiver. In this paper, three deep neural network (DNN) models are proposed to solve the problem of non-linear distortions introduced by the power amplifier (PA) of the transmitters and replace the conventional digital signal processing (DSP) modules at the receivers in 2 × 2 MIMO OFDM and 4 × 4 MIMO OFDM systems. Proposed model type I uses the DNN model to de-map the signals at the receiver. Proposed model type II uses the DNN model to learn and filter out the channel noises at the receiver. Proposed model type III uses the DNN model to de-map and detect the signals at the receiver. All three model types attempt to solve the non-linear problem. The robust bit error rate (BER) performances of the proposed receivers are achieved through the software and hardware implementation results. In addition, we have also implemented appropriate hardware architectures for the proposed DNN models using special techniques, such as quantization and pipeline to check the feasibility in practice, which recent studies have not done. Our hardware architectures are successfully designed and implemented on the Virtex 7 vc709 FPGA board.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3