Research on Data-Driven Methods for Solving High-Dimensional Neutron Transport Equations

Author:

Peng Zhiqiang123,Lei Jichong123ORCID,Ni Zining123,Yu Tao13,Xie Jinsen13,Hong Jun2,Hu Hong2

Affiliation:

1. School of Nuclear Science and Technology, University of South China, Hengyang 421001, China

2. School of Safe and Management Engineering, Hunan Institute of Technology, Hengyang 421002, China

3. Key Lab of Advanced Nuclear Energy Design and Safety, Ministry of Education, Hengyang 421001, China

Abstract

With the continuous development of computer technology, artificial intelligence has been widely applied across various industries. To address the issues of high computational cost and inefficiency in traditional numerical methods, this paper proposes a data-driven artificial intelligence approach for solving high-dimensional neutron transport equations. Based on the AFA-3G assembly model, a neutron transport equation solving model is established using deep neural networks, considering factors that influence the neutron transport process in real engineering scenarios, such as varying temperature, power, and boron concentration. Comparing the model’s predicted values with reference values, the average error in the infinite multiplication factor kinf of the assembly is found to be 145.71 pcm (10−5), with a maximum error of 267.10 pcm. The maximum relative error is less than 3.5%, all within the engineering error standards of 500 pcm and 5%. This preliminary validation demonstrates the feasibility of using data-driven artificial intelligence methods to solve high-dimensional neutron transport equations, offering a new option for engineering design and practical engineering computations.

Funder

National Natural Science Foundation of China

Hunan Provincial Department of Education Key Teaching Reform Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3