Structural Design of a Special Machine Tool for Internal Cylindrical Ultrasonic-Assisted Electrochemical Grinding

Author:

Ma Xiaosan,Jiao FengORCID,Bie Wenbo,Niu YingORCID,Chu Shuaizhen,Hu Zhanzhan,Yang Xiaohong

Abstract

During the process of internal cylindrical ultrasonic-assisted electrochemical grinding (ICUAECG), both the workpiece and the conductive grinding wheel are rotating, the machining space is closed and narrow, the electrolyte is difficult to spray into the machining area, and the insulation between the workpiece and the machine bed is challenging. According to the machining characteristics of ICUAECG, the structure of a special machine tool was designed to mitigate these problems. In particular, the rotation, electrolyte supply, electric connection, and insulation modes of the workpiece clamping parts were studied, yielding a novel workpiece clamping- and rotating-device design. This structure can fully use the internal space of the hollow spindle of the machine tool, effectively reduce the external moving parts, and achieve the appropriate liquid injection angle of the electrolyte. The ultrasonic vibration system and its installation mechanism, the dressing device of the conductive grinding wheel, and the electric grinding spindle-mounting and -fixing device were analyzed in detail. Then, a special machine tool for ICUAECG was designed, the operability and feasibility of which were verified by experiments involving conductive grinding wheel dressing and ICUAECG.

Funder

National Natural Science Foundation of China

Key R&D and Promotion Program (Science and Technology) in Henan Province

the Fundamental Research Funds for the Universities of Henan Province

Key Subject of Mechanical Engineering of Henan Polytechnic University

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3