The Role of Active Sites Location in Partial Oxidation of Methane to Syngas for MCM-41 Supported Ni Nanoparticles

Author:

Ding Chuanmin,Wang Junwen,Li Yufeng,Ma Qian,Ma Lichao,Guo Jing,Ma Zili,Liu Ping,Zhang Kan

Abstract

The supporting modes of active metal over mesoporous materials play an important role in catalytic performance. The location of Ni nanoparticles inside or outside the mesoporous channel of MCM-41 has a significant influence on the reactivity in partial oxidation of methane to syngas reaction. The characterization data using different techniques (Transmission Electron Microscope (TEM), X-Ray Diffraction (XRD), N2 adsorption-desorption, H2 Temperature-Programmed Reduction (H2-TPR), and Inductively Coupled Plasma (ICP)) indicated that nickel was located outside the mesoporous channels for the impregnation method (Ni/MCM-41), while nickel was encapsulated within MCM-41 via the one-step hydrothermal crystallization method (Ni-MCM-41). The nickel atoms were mainly dispersed predominantly inside the skeleton of zeolite. When the load amount of Ni increased, both of Ni species inside the skeleton or pore channel of zeolite increased, and the ordered structure of MCM-41 was destroyed gradually. Contributed by the strong interaction with MCM-41, the Ni particles of Ni-MCM-41 were highly dispersed with smaller particle size compared with supported Ni/MCM-41 catalyst. The Ni-MCM-41 displayed higher catalytic performance than Ni/MCM-41, especially 10% Ni-MCM-41 due to high dispersity of Ni. The confinement effect of MCM-41 zeolite also afforded high resistance of sintering and coking for 10% Ni-MCM-41 catalyst. Especially, 10% Ni-MCM-41 catalyst showed outstanding catalytic stability.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanxi Province

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3