An Experimental Investigation on the Material Removal Rate and Surface Roughness of a Hybrid Aluminum Metal Matrix Composite (Al6061/SiC/Gr)

Author:

Singh MandeepORCID,Maharana Sthitapragyan,Yadav AnchalORCID,Singh RasmeetORCID,Maharana Pragyansu,Nguyen Tien V. T.,Yadav SudeshORCID,Loganathan M. K.ORCID

Abstract

The objective of this paper was to determine the optimum process parameters of an electric discharge machine while machining a new hybrid aluminum metal matrix composite. In this study, a new hybrid aluminum metal matrix composite was prepared, with silicon carbide and graphite particles used as reinforcements, with the help of the stir casting method. The selected electric discharge machining parameters in this study were peak current (I), voltage (V), pulse-on time (Ton), and tool material, while the response parameters were material removal rate and surface roughness. To machine the fabricated samples, two different types of tool materials (copper and brass) were used as electric discharge machine electrodes, and each had a diameter (Ø) of 12.0 mm. The optimal settings of the electric discharge machining parameters were determined through experiments planned, conducted, and analyzed using the Taguchi (L18) technique. An analysis of variance and confirmatory tests were used to check the contribution of each machining parameter. It was found that the material removal rate increased with the increase in pulse-on time and pulse current, whereas the material removal rate decreased with the increase in voltage. On the other hand, reduced surface roughness could only be achieved when current, voltage, and pulse duration were low. It was also found that the selected electric discharge machining electrodes had a significant effect on both the material removal rate and the surface roughness.

Publisher

MDPI AG

Subject

General Materials Science,Metals and Alloys

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3